Sabtu, 23 Maret 2013

Hubungan Antara Harga Kc Dengan Kp


Hubungan Antara Harga Kc Dengan Kp

Ditulis oleh Ratna dkk pada 20-04-2009
Hubungan Antara Harga Kc Dengan KUntuk reaksi umum:
a A(g) + b B(g) ↔ c C(g) + d D(g)
Harga tetapan kesetimbangan:
Kc = [(C)c . (D)d] / [(A)a . (B)b]
Kp = (PCc x PDd) / (PAa x PBb)
Dimana : PA, PB, PC dan PD merupakan tekanan parsial masing-masing gas A, B, C dan D.
Untuk gas ideal berlaku :
pV = nRt
C = p/RT
CA = pA/RT
CB = pA/RT dan seterusnya.
rm114
Kc = Kp(1/RT)Δn
Secara matematis, hubungan antara Kc dan Kp dapat diturunkan sebagai:
Kp = Kc (RT) Δn
dimana Δn adalah selisih (jumlah koefisien gas kanan) dan (jumlah koefisien gas kiri).
Contoh:
Jika diketahui reaksi kesetimbangan: CO2(g) + C(s)   ↔ 2CO(g)
Pada suhu 300o C, harga Kp= 16. Hitunglah tekanan parsial CO2, jika tekanan total dalaun ruang 5 atm!
Jawab:
Misalkan tekanan parsial gas CO = x atm, maka tekanan parsial gas CO2 = (5 – x) atm.
Kp = (PCO)2 / PCO2 = x2 / (5 – x) = 16 →     x = 4
Jadi tekanan parsial gas CO2 = (5 – 4) = 1 atm

Kesetimbangan Heterogen

Kesetimbangan heterogen
Kesetimbangan heterogen
Perhatikan reaksi dekomposisi berikut : CaCO3(p) ↔ CaO(p) + CO2(g)
Campuran dua zat padat yang tidak membentuk larutan padat terdiri dari dua fasa, masing-masing adalah senyawa yang murni dan mempunyai komposisi yang konstan.
Kc =   CO2
Kp = PCO2
Kp = Kc . RTΔn

PENYETARAAN REAKSI REDOKS



PENYETARAAN REAKSI REDOKS

Penyetaraan reaksi redoks berarti menyamakan jumlah atom dan muatan masing-masing unsur pada pereaksi dengan jumlah atom dan muatan masing-masing unsur pada hasil reaksi. Artinya sebelum muatan dan jumlah atom di kedua ruas (pereaksi dan hasil reaksi) sama, maka reaksi masih belum setara.
Penyetaraan persamaan reaksi redoks dapat dilakukan dengan 2 cara, yaitu :
  • Cara Setengah Reaksi
  • Cara Perubahan Bilangan Oksidasi
Dengan kedua cara ini kita akan mendapatkan reaksi redoks yang setara. Jadi tidak ada perbedaan hasil diantara keduannya, tergantung anda, mana yang lebih dikuasai.
Baiklah sekarang mari kita bahas masing-masing cara menyetarakan reaksi redoks berikut ini :
1. CARA SETENGAH REAKSI
Penyetaraan persamaan reaksi redoks dengan cara setengah reaksi, yaitu dengan melihat elektron yang diterima atau dilepaskan. Penyetaraan dilakukan dengan menyamakan jumlah elektronnya. CARA INI DIUTAMAKAN UNTUK REAKSI DENGAN SUASANA REAKSI YANG TELAH DIKETAHUI.
Langkah-langkah penyetaraan :
Contoh : MnO4- + Cl- –> Mn2+ + Cl2 (Asam)
1. Menuliskan setengah reaksi kedua zat yang akan direaksikan
MnO4- –> Mn2+
Cl- –> Cl2
2. Menyetarakan jumlah atom unsur yang terlibat
MnO4- –> Mn2+
2Cl- –> Cl2
3. Menambah H2O pada suasana Asam (pada yg kurang O) dan pada suasana Basa (pada yg kelebihan O)
MnO4- –> Mn2+ + 4H2O
2Cl- –> Cl2
4. Menyetarakan atom Hidrogen (H) dengan menambah H+ pada suasana Asam dan OH- pada susana basa
MnO4- + 8H+ –> Mn2+ + 4H2O
2Cl- –> Cl2
5. Menyetarakan muatan dengan menambah elektron
MnO4- + 8H+ 5e –> Mn2+ + 4H2O   [selisih elektron pereaksi (7) dan hasil reaksi (2)]
2Cl- –> Cl2 + 2e [elektron pereaksi -2 maka di hasil reaksi harus ditambah 2e]
6. Menyamakan jumlah elektron yang diterima dengan yang dilepas dengan perkalian silang antar elektron (didapat dari penambahan jumlah elektron)
MnO4- + 8H+ 5e –> Mn2+ + 4H2O    | x 2
2Cl- –> Cl2 + 2e  | x 5
Hasilnya menjadi :
2MnO4- + 16H+ 10e –> 2Mn2+ + 8H2O    
10Cl- –> 5Cl2 + 10e
————————————————————
2MnO4- + 10Cl- + 16H+ –> 2Mn2+ + 5Cl2 + 8H2O
Buktikan jumlah atom dan muatannya apakah sudah sama atau belum?…. ;)
2. CARA PERUBAHAN BILANGAN OKSIDASI
Penyetaraan persamaan reaksi redoks dengan cara perubahan bilangan oksidasi, dilakukan dengan melihat kecenderungan perubahan bilangan oksidasinya. Penyetaraan dilakukan dengan menyamakan perubahan bilangan oksidasi. PADA CARA INI SUASANA REAKSI UMUMNYA BELUM DIKETAHUI (AKAN DIKETAHUI DARI PERBEDAAN MUATAN PEREAKSI DAN HASIL REAKSI)
Langkah-langkah penyetaraan :
Contoh : Fe2+ + Cr2O72- –> Fe3+ + Cr3+
1. Menyetarakan unsur yang mengalami perubahan biloks
Fe2+ + Cr2O72- –> Fe3+ + 2Cr3+
  1. Menentukan biloks masing-masing unsur /senyawa
Fe2+ + Cr2O72- –> Fe3+ + 2Cr3+
2+       +12             3+        +6
2. Menentukan selisih perubahan biloks
Fe2+ –> Fe3+ [biloks naik (oksidasi) –> selisih +2 ke +3 adalah 1
Cr2O72- –> 2Cr3+ [biloks turun (reduksi) –> selisih +12 ke +6 adalah 6
3. Menyamakan perubahan biloks dengan perkalian silang
Fe x 6 –> setiap anda menemukan unsur Fe kalikan dengan 6
Cr x 1 –> setiap anda menemukan unsur Cr kalikan dengan 1
Sehingga reaksi diatas menjadi
6Fe2+ + Cr2O72- –> 6Fe3+ + 2Cr3+
4.  Menentukan muatan pereaksi dan hasil reaksi ( Jika muatan pereaksi lebih negatif/rendah maka ditambah H+ berarti suasana Asam. Jika muatan pereaksi lebih positif/tinggi,  maka ditambah OH-berarti suasana basa.
6Fe2+ + Cr2O72- –> 6Fe3+ + 2Cr3+
+12 – 2 = +10 18+ 6 = +24
Artinya : muatan pereaksi lebih rendah, maka tambahkan H+ sebanyak selisih muatannya yaitu 24-10 = 14 dan diletakkan di tempat yang muatannya kurang. Sehingga reaksi menjadi
6Fe2+ + Cr2O72- + 14H+ –> 6Fe3+ + 2Cr3+
5. Menyetarakan Hidrogen dengan menambah H2O pada tempat yang belum ada oksigennya.
6Fe2+ + Cr2O72- + 14H+ –> 6Fe3+ + 2Cr3+ + 7H2O
LATIHAN :
Setarakan reaksi redoks berikut : MnO4- +ClO2- –> MnO2 + ClO4-
Hasil jawaban anda dapat dikirim dengan Attact file MS-Word ke email : esdi_pangganti@yahoo.com
SELAMAT BELAJAR

CARA MENJELASKAN HIBRIDISASI DAN BENTUK MOLEKUL XeF4


CARA MENJELASKAN HIBRIDISASI DAN BENTUK MOLEKUL XeF4

Hibridisasi adalah penyetaraan tingkat energi melalui penggabungan antarorbital. Senyawa kovalen atau kovalen koordinasi. Teori hibridisasi dipromosikan oleh kimiawan Linus Pauling dalam menjelaskan struktur molekul seperti metana (CH4). Secara historis, konsep ini dikembangkan untuk sistem-sistem kimia yang sederhana, namun pendekatan ini selanjutnya diaplikasikan lebih luas, dan sekarang ini dianggap sebagai sebuah heuristik yang efektif untuk merasionalkan struktur senyawa organik.
Teori hibridisasi tidaklah sepraktis teori orbital molekul dalam hal perhitungan kuantitatif. Masalah-masalah pada hibridisasi terlihat jelas pada ikatan yang melibatkan orbital d, seperti yang terdapat pada kimia koordinasi dan kimia organologam.
Walaupun skema hibridis logam transisi dapat digunakan, ia umumnya tidak akurat.
Sangatlah penting untuk dicatat bahwa orbital adalah sebuah model representasi dari tingkah laku elektron-elektron dalam molekul. Dalam kasus hibridisasi yang sederhana, pendekatan ini didasarkan pada orbital-orbital atom hidrogen.
Orbital-orbital yang terhibridisasikan diasumsikan sebagai gabungan dari orbital-orbital atom yang bertumpang tindih satu sama lainnya dengan proporsi yang bervariasi. Orbital-orbital hidrogen digunakan sebagai dasar skema hibridisasi karena ia adalah salah satu dari sedikit orbital yang persamaan Schrödingernya memiliki penyelesaian analitis yang diketahui. Orbital-orbital ini kemudian diasumsikan terdistorsi sedikit untuk atom-atom yang lebih berat seperti karbon, nitrogen, dan oksigen. Dengan asumsi-asumsi ini, teori hibridisasi barulah dapat diaplikasikan.
Perlu dicatat bahwa kita tidak memerlukan hibridisasi untuk menjelaskan molekul, namun untuk molekul-molekul yang terdiri dari karbon, nitrogen, dan oksigen, teori hibridisasi menjadikan penjelasan strukturnya lebih mudah.Teori hibridisasi sering digunakan dalam kimia organik, biasanya digunakan untuk menjelaskan molekul yang terdiri dari atom C, N, dan O (kadang kala juga P dan S).
Untuk menjelaskan bagaimana Hibridisasi Gas Mulia seperti XeF4, mari ikuti penjelasan berikut :
Struktur Molekul XeF4
Selanjutnya mari kita lihat diagram orbital Xe
DIAGRAM ORBITAL Xe AWAL
selanjutnya karena ada 4 atom F maka perubahannya menjadi
HIBRIDISASI XeF4
SEMOGA PENJELASAN INI DAPAT MEMBANTU

Reaksi Eliminasi adalah reaksi penghilangan suatu gugus atom pada suatu senyawa. Pada reaksi elimiasi teradi perubahan ikatan, ikatan tunggal –> ikatan rangkap


REAKSI-REAKSI SENYAWA ORGANIK

REAKSI SUBTITUSI, ADISI, ELIMINASI


Reaksi Subtitusi adalah reaksi penggantian (penukaran) suatu gugus atom oleh gugus atom lain. Pada reaksi subtitusi tidak terjadi perubahan ikatan, ikatan tunggal –>ikatan tunggal.

Contoh :
  1. Reaksi monoklorinasi propana (pengantian satu atom H oleh satu atom Cl), misalnya : C3H8 + Cl2 –> C3H7Cl + HCl
  2. Reaksi dibrominasi propana (penggantian dua atom H oleh dua atom Br), misalnya : C3H8 + 2Br2–> C3H6Br2 + 2HBr

Reaksi Adisi adalah reaksi penambahan suatu atom pada ikatan rankap dalam suatu senyawa. Pada reaksi adisi terjadi perubahan ikatan, ikatan rangkap tiga –> ikatan rangkap dua, atau ikatan rangkap dua –> ikatan tunggal

Contoh :
  1. Reaksi adisi pada Alkena dan Alkuna
CH2=CH2 + Br2 –> CH2Br–CH2Br
CHºCH + 2H2 –> CH3 – CH3
CH2=CH–CH3 +HBr –>  CH3–CHBr–CH3 (Pada reaksi ini berlaku hukum Markovnikov ”Atom H dari asam halida ditangkap oleh C berikatan rangkap yang mengikat atom H lebih banyak atau gugus alkil yang lebih kecil)
  1. Reaksi adisi hidrogen pada senyawa yang mempunyai gugus karbonil (alkanal dan keton)
R–CHO + H2 –> R–CH2OH (menghasilkan suatu alkohol primer)
R-CO– R + H2 –> R–CHOH–R (menghasilkan suatu alkohol sekunder)
Catatan : Reaksi-reaksi di atas disebut juga reaksi reduksi aldehida da keton

Reaksi Eliminasi adalah reaksi penghilangan suatu gugus atom pada suatu senyawa. Pada reaksi elimiasi teradi perubahan ikatan, ikatan tunggal –> ikatan rangkap

Contoh :
CH3–CH3 –> CH2=CH2 + H2
CH3–CH2Br –> CH2=CH2 + HBr
CH3–CH2OH –> CH2=CH2 + H2O

REAKSI-REAKSI SENYAWA ALKOHOL

1. Reaksi Oksidasi
Alkohol primer (R-CH2OH)            Aldehida (R-CHO)           Asam karboksilat (R-COOH)
Alkohol sekunder (R-CHOH-R             Keton (R-CO-R)
Alkohol tersier (R3COH), tidak dapat dioksidasi
2. Reaksi dengan Na
Semua alkohol bereaksi dengan logam Na, menurut persamaan reaksi berikut :
2R-OH + 2Na –> 2R-ONa + H2
3. Reaksi dengan fosfortriklorida (PCl3)
Semua alkohol bereaksi dengan PCl3, menurut persamaan reaksi berikut :
3R-OH + PCl3 –> 3R-Cl + H3PO3
4. Reaksi dengan Asam Sulfat (H2SO4)
a.    Pada suhu sekitar 1300C terjadi penggabungan dua molekul alkohol menjadi eter (eterifikasi)
2R-OH                R-O-R + H2O
  1. Pada suhu sekitar 1800C terjadi eliminasi air dari alkohol membentuk suatu alkena
CH3-CH2-OH            CH2=CH2 + H2O
REAKSI SENYAWA ETER
Reaksi Subtitusi Eter, eterdapat mengalami reaksi subtitusi dengan HBr atau HI menghasilkan suatu alkohol dan alkil halida; R-O-R’ +HX à R-OH + R’-X (Catatan : R yang lebih panjang membentuk alkohol sedangkan R’ yang lebih pendek membentuk alkil halida).
Contoh :
CH3-CH2-O-CH2-CH3 + HI –> CH3-CH2-OH + CH3-CH2I
CH3-CH2-CH2-O-CH2-CH+ HBr –> CH3-CH2-CH2-OH + CH3-CH2Br

REAKSI-REAKSI SENYAWA ASAM KARBOKSILAT DAN ESTER

1. Reaksi Penetralan, reaksi antara asam karboksilat dengan basa mengahsilkan garam dan air
R-COOH + NaOH –> R-COONa + H2O
2. Reaksi Esterifikasi, reaksi antara asam karboksilat dengan alkohol menghasilkan ester dan air
R-COOH + R’-OH–> R-COOR’ + H2O
3. Reaksi Hidrolisis, reaksi antara ester dengan air dalam suasana asam menghasilkan asam karboksilat dan alkohol
R-COOR’ + H2O –> R-COOH + R’-OH
4. Reaksi Safonifikasi (Penyabunan), reaksi antara ester dengan basa menghasilkan garam danalkohol
R-COOR’ + NaOH –> R-COONa + R’-OH
Pada reaksi pembuatan sabun, maka ester yang digunakan adalah suatu lemak (trigliserida) denganKOH menghasilkan suatu garam lemak (sabun) dan gliserol
Contoh :
CH2-OOC-C17H35 CH2-OH
|                                                                                                          |
CH-OOC-C17H35 + 3KOH –> 3C17H35COOK +        CH-OH
|                                                                                                          |
CH2-OOC-C17H35 CH2-OH
Gliseril tristrearat                  Kalium stearat                 Gliserol
(Suatu Lemak)                  (Suatu Sabun)      (Alkohol hasil sampingan)

REAKSI-REAKSI PENGUJIAN SENYAWA ORGANIK

1. Reaksi Uji Ikatan Rangkap
a.     Penentuan keberadaan ikatan rangkap dalam suatu senyawa dapat dilakukan dengan menggunakan pereaksi brom (Br2) yang berwarna coklat. Bila warna coklat brom hilang maka dalam senywa terdapat ikatan rangkap karena terjadi reaksi adisi Br2 terhadap karbon berikatan rangkap.
b.     Untuk menentukan letak iakatan rangkap dalam suatu senyawa dilakukan reaksi ozonolisis. R-CH=CH-R’ + O3 –>R-CH2OH + R’-CH2OH
2. Reaksi Uji Iodoform, reaksi uji ini dilakukan untuk menentukan keberadaan gugus metil ujung dalam senyawa alkohol atau senyawa karbonil (aldehida atau keton): CH3-CHOH-  atau CH3-CO-

SELAMAT BELAJAR